Ceng 520

Information Security and Cryptography

Instr.Dr. Nurdan Saran

Definitions

- Computer Security - generic name for the collection of tools designed to protect data and to thwart hackers
- Network Security - measures to protect data during their transmission
- Internet Security - measures to protect data during their transmission over a collection of interconnected networks

Security Attack

- any action that compromises the security of information owned by an organization
- information security is about how to prevent attacks, or failing that, to detect attacks on information-based systems
- often threat \& attack used to mean same thing
- have a wide range of attacks
- can focus of generic types of attacks
- passive
- active

Passive Attacks

Active Attacks

Classify Security Attacks as

- passive attacks - eavesdropping on, or monitoring of, transmissions to:
- obtain message contents, or
- monitor traffic flows
- active attacks - modification of data stream to:
- masquerade of one entity as some other
- replay previous messages
- modify messages in transit
- denial of service

Security Services

- Privacy
- Authentication : verifies the identity of the source
- Data Integrity : protects the data from modification
- Non-repudiation : prevent a party from denying previous actions or aggreements.
- Confidentiality : keep information secret to anyone but the intended recipients.

Greek:
 kryptos + graphein \rightarrow hidden writing

Cryptogiraphy is the study of secret (crypto) writimg (graphy) comcermed with developing algorithins wilnilit may be used to

- comceal the context of some message firom all except the semder and recipient (privacy or secrecy), arid/ar
- verify the correctmess of a rnessage to the recipient (authentication)
- form the basis of rnamy techiologicall solutions to compiuter amd comminumications security problem

Encryption

- Convert normal, readable data into obscured, unreadable data

Cankaya
Encryption Algorithm
absh?nwTbsdn

Cankaya

Decryption

- Convert obscured, unreadable data into normal, readable data

Cankaya

Isdsbsm288SSh
Cankaya

Terminology

-® plaintext - clear readable text

- ciphertext - unreadable text
- cipher - algorithm(s) for encryption and decryption

Cankaya
Encryption Algorithm
Isdsbsm288SSh

Isdsbsm288SSh
Decryption Algorithm
Cankaya

Terminology

- Key -- a secret piece of information that controls how the encryption algorithm works
- Different keys produce different encrypted results Key: "Ceng 435"

Cankaya

Encryption Algorithm

Key: "Ceng 520"

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of publickey in 1970's
- and by far most widely used

Symmetric Cipher Model

Secret key shared by sender and recipient

Secret key shared by sender and recipient为

Symmetric Key

- Alice wants to send a private/confidential message to Bob
- Alice computes $\mathrm{c}=\mathrm{E}_{\mathrm{k}}(\mathrm{p})$
- Sends c to Bob over unsecured wire
- Bob computes $\mathrm{p}=\mathrm{D}_{\mathrm{k}}(\mathrm{c})$

Requirements

- two requirements for secure use of symmetric encryption:
- a strong encryption algorithm
- a secret key known only to sender / receiver
- assume encryption algorithm is known
- implies a secure channel to distribute key
- Shared secret is great... but how do we distribute it?

Asymmetric Key Cryptography

- Instead of one key, have two
- public key
- private key
- Use one key to encode / encrypt
- Use other key to decode/decrypt
- Someone can know public key
- Computing private key from public key is very, very difficult (factoring huge number)

Application: Secrecy

- Bob has Bob.pub, Bob.priv
- Alice has Alice.pub, Alice.priv
- Alice wants to send Bob a secret "I Love You" note

Application: Secrecy

- Alice finds Bob.pub from his website
- Alice computes c $=\mathrm{E}_{\text {Bob.pub }}(\mathrm{p})$
- Sends c to Bob over unsecured wire
- Bob computes $\mathrm{p}=\mathrm{D}_{\text {Bob.priv }}(\mathrm{c})$

Advantages

- Key distribution not a problem!
- Anyone can send a message to Bob
- Only Bob can decrypt!

Application: Authenticity

- Alice wants to tell Bob the message is really from her!
- Digital signature
- Alice computes $\mathrm{c}=\mathrm{E}_{\text {Alice.priv }}(\mathrm{p})$
- Alice sends c over unsecured wire
- Anyone can check that Alice is the sender... by computing $\mathrm{p}=\mathrm{D}_{\text {Alice.pub }}(\mathrm{c})$

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!

A.pub, B.pub, ...

Bob
 B.priv

"I love you"

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!

A.pub, B.pub, ...

Bob
 B.priv

Authenticity + Secrecy

Alice
A.priv
"I love you" B.pub
"This is from A"

Carl \& Eve Bad People!

A.pub, B.pub, ...

Bob
 B.priv

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!

A.pub, B.pub, ...

> Bob
> B.priv
"I love you" B.pub
"This is from A"
A.priv

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!

A.pub, B.pub, ...
"I love you"
B.pub
"This is from A"
A.priv

> Bob B.priv

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!

A.pub, B.pub, ...

Bob B.priv

"I love you" B.pub
"This is from A"

A.priv

Hash Functions

- A cryptographic hash function is a deterministic procedure that takes an arbitrary block of data and returns a fixed-size bit string.
- $\mathrm{h}=$ hash(data)
- Every bit in input affects output
- Hash function is not invertible

Some properties of Hash Function

- it is easy to compute the hash value for any given message,
- it is infeasible to find a message that has a given hash,
- it is infeasible to modify a message without changing its hash,
- it is infeasible to find two different messages with the same hash.

Error Checking

- Alice wants to send a LONG message to Bob
- Alice computes $\mathrm{h}=$ hash(\$LONG_MSG);
- Sends data to Bob, includes relatively short h at the end of message
- Bob recomputes hash.
- If match, great! Data's correct!
- If not match, either hash or data was corrupted. Resend.

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!

A.pub, B.pub, ...

Bob
 B.priv

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!
Bob
B.priv
A.pub, B.pub, ...

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve
Bad People!
A.pub, B.pub, ...

> Bob
> B.priv
"This is from A"
12fea90897bddc

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve
Bad People!

A.pub, B.pub, ...

> Bob B.priv
"I love you"
"This is from A"
12fea90897bddc

Bob.pub

Authenticity + Secrecy

Alice
A.priv

> Bob B.priv

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!
A.pub, B.pub, ...

Bob
 B.priv

"I love you"
"This is from A"
12fea90897bddc A.priv

Bob.pub

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve
Bad People!
A.pub, B.pub, ...

Bob B.priv

"This is from A"
12fea90897bddc

Authenticity + Secrecy

Alice
A.priv

Carl \& Eve Bad People!
A.pub, B.pub, ...

Bob B.priv

"I love you"
"This is from A"
12fea90897bddc

$$
=?
$$

hash("I love you")

Symmetric vs. Asymmetric

- Symmetric faster but relies on shared secret
- Asymmetric slower but "solves" distribution-of-keys problem

Characterization of Cryptographic System

-type of encryption operations used substitution / transposition / product

- number of keys used
- single-key or private / two-key or public
- way in which plaintext is processed -block / stream

Important Properties

- the encryption and decryption functions are efficiently computable for all keys k, i.e., it should be relatively easy both to encrypt and decrypt, given the key, and
- it should computationally infeasible to decipher the ciphertext, i.e., an opponent upon seeing a ciphertext should be unable to determine either the key k that was used or the original plaintext string.
- Usually assume the cryptographic system is public, and only the key is secret information

Cryptanalysis

- objective to recover key not just message
- general approaches:
${ }^{\bullet}$ cryptanalytic attack
- brute-force attack

Cryptanalytic Attacks

- ciphertext only
- only know algorithm \& ciphertext, is statistical, know or can identify plaintext
- known plaintext
- know/suspect plaintext \& ciphertext
- chosen plaintext
- select plaintext and obtain ciphertext
- chosen ciphertext
- select ciphertext and obtain plaintext
- chosen text
- select plaintext or ciphertext to en/decrypt

More Definitions

- unconditional security
- no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext
- computational security
- given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

| Key Size (bits) | Number of Alternative
 Keys | Time required at 1
 decryption/ $\boldsymbol{\mu s}$ | Time required at 10 $\mathbf{0}^{6}$
 decryptions/ $\boldsymbol{\mu s}$ |
| :--- | :--- | :--- | :--- | :--- |
| 32 | $2^{32}=4.3 \times 10^{9}$ | $2^{31} \mu \mathrm{~s} \quad=35.8$ minutes | 2.15 milliseconds |
| 56 | $2^{56}=7.2 \times 10^{16}$ | $2^{55} \mu \mathrm{~s} \quad=1142$ years | 10.01 hours |
| 128 | $2^{128}=3.4 \times 10^{38}$ | $2^{127} \mu \mathrm{~s} \quad=5.4 \times 10^{24}$ years | 5.4×10^{18} years |
| 168 | $2^{168}=3.7 \times 10^{50}$ | $2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years | 5.9×10^{30} years |
| 26 characters
 (permutation) | $26!=4 \times 10^{26}$ | $2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years | 6.4×10^{6} years |

